## DAMAGE DETECTION USING THE HOLDER EXPONENT



Nguyen B. Do Scott R. Green Timothy A. Schwartz

Mentor - Charles R. Farrar

Dynamics Summer School August 1, 2002



#### Overview

- Motivation
- Background and previous
- Our endeavor
- Results and next







Courtesy of the Navy Research Lab



#### Damage introduces non-linearities in a structural system

Crack initiation and propagation

**Bolt pretension loss** 

Loose part "rattle"



www-cemef.cma.fr





### Current detection methods characterize changes in linear models of the structure

Modal shapes and parameters



Autoregressive correlation coefficients





# However, these methods are not foolproof

- - Modal analysis methods only detect global changes
  - Autoregressive models do not take advantage of non-linearities

Monitoring of structural health should involve pinpointing damage:

- In time
- In space





### A damage detection method using a feature known as the Holder Exponent is explored

#### How?

- Measures time signal regularity
- Extracts instantaneous high frequency content







# Calculation of the Holder Exponent relies on time-frequency analysis methods

Fast Fourier Transform (FFT) shortcomings









#### The important difference between the STFT and the CWT lies in resolution





STFT CWT

The excellent time resolution at high frequencies is key









## The Holder Exponent can be computed directly from the CWT



### Robertson and Farrar first explored the capability of the Holder Exponent



#### Doctored earthquake data







#### Loose part rattle











# The effectiveness of the Holder Exponent is explored by testing physical models



Applicability to "real world" structures

Sensitivity to instrument locations

Automating the detection process with a Statistical Process Control (SPC)





# The tested structures modeled different forms of damage





Three-story structure





5 DOF system



### Results from the cantilever beam showed the Holder Exponent was sensitive to damage





However, obvious events do not really need detection methods





#### The Holder Exponent detected damage in the 5 DOF, but some features were obvious in the time signal



Magnitudes and occurrences of the impacts were difficult to control





#### The three-story structure produced varying results based on the input The Holder Exponent is effective for periodic inputs The Holder E for broadb 0.8 0.6 0.4 - 0 4 -0.5

## A return to the fundamentals illuminated why random inputs were not giving favorable results

Frequency content of impulse is broadband





### Armed with this insight, the three-story structure was revisited

THE RESERVE OF THE PROPERTY OF

Shaped random input



ing results for world lications



n/Schwartz SS 2002

# Subsequently, the sensitivity to proximity was explored



### Subsequently, the sensitivity to proximity was explored





## A SPC was developed to assess the feasibility of automating the detection scheme



Establishment of control limits



Best results when healthy data is used





### Significant discoveries were made with regards to the usefulness of the Holder Exponent

- Frequency content of the input is important
- Information from damage events is attenuated
- Automating the detection process seems to hold promise

#### The applicability of the Holder Exponent could be further characterized

- Sensitivity to damage level
- Quantify proximity sensitivity for more systems





#### Acknowledgments

- Special thanks to Jeanette Wait for procedural and data extraction help
- Thanks to Amy Robertson and Hoon Sohn for aiding in our understanding of the fundamentals
- Thanks to the Engineering Science and Applications Division at the Los Alamos National Laboratory and the Dept. of Energy's Education Programs Office for funding
- Thanks to The Mathworks, Inc. for generously donating numerical analysis software



### Significant discoveries were made with regards to the usefulness of the Holder Exponent

- Frequency content of the input is important
- Information from damage events is attenuated
- Automating the detection process seems to hold promise

The applicability of the Holder Exponent could be further characterized

- Sensitivity to damage level
- Proximity sensitivity for more systems

#### **QUESTIONS?**



